من السبت الى الخميس (8:00AM-2:00PM)
تواصل معنا : +9647716699096
الرئيسية
عن الجامعة
من نحن
رؤية ورسالة واهداف
الغايات والاهداف الاستراتيجية
مجلس الجامعة
كلمة رئيس الجامعة
السيرة الذاتية لرئيس الجامعة
الاعراف بالجامعة والكليات والاقسام
الخطة الاستراتيجية لجامعة بلاد الرافدين
التقويم الجامعي
روابط صديقة للتعليم
الكليات
طب الاسنان
الصيدلة
التمريض
التقنيات الطبية والصحية
الهندسة
التقنيات الهندسية
القانون
التربية البدنية وعلوم الرياضة
الادارة والاقتصاد
العلوم الانسانية
الاقسام الادارية
الموقع الالكتروني
الطلبة والتدريسيين
الطلبة
دليل القبول والتسجيل
الخريجين
مشاريع التخرج
المقررات الدراسية
المحاضرات الالكترونية
الاوائل
وصف البرنامج الاكاديمي
التدريسيين
ملاك الكلية
بحوث التدريسيين
الكتب والمؤلفات
بريد التدريسيين
Google Scholar
ORCid
ResearchGate
Research Id
البوابة الالكترونية للتدريسي
المجلة
مجلة بلاد الرافدين للعلوم الانسانية والاجتماعية
Bilad Alrafidain Journal For Engineering Science And Technology (BAJEST)
Journal of Medical Science and Technical Health
م.د. عمار محمد عبد اللطيف جاسم
Dr Ammar Mohammed Abdulateef
رئيس قسم : هندسة تقنيات الطيران
Head of the Department : DEPARTMENT OF AERONAUTICAL ENGINEERING TECHNIQUES
دكتوراه هندسة ميكانيك
PhD in Mechanical Engineering
ammar@bauc14.edu.iq
ammarukm@gmail.com
السيرة الذاتية
Google Scholar
ORCId
Research Gate
Research Id
نشاطات التدريسي
البحوث المنشورة
المؤلفات
المقررات المكلف بها
المحاضرات
مشاريع التخرج
المقالات داخل المجلة
البحوث
Sustainable Energy Progress via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review
2023
sustainability
Flat plate collectors (FPCs) are the leading solar thermal technology for low-medium range temperature applications. However, their expansion in developing countries is still lacking because of their poor thermal performance. Improving the thermal performance of flat plate collectors (FPCs) is a crucial concern addressed in this review This study comprehensively discussed the performance improvement methods of FPCs, such as design modification, reflectors, working fluid, and energy storage materials, by covering current issues and future recommendations. Design factors such as coating and glass cover thickness, thickness of absorber plate and material, air gap between the glass cover and absorber plate, and riser spacing, along with insulation materials, are examined for their impact on FPC performance. Absorber design changes with selective coatings for improving the heat transmission rate between the working fluid and absorber are critical for enhancing collectors’ thermal output. The nanofluids utilization improved FPC’s thermal performance in terms of energetic and exergetic outcomes in the 20–30% range. Moreover, adding a heat storage unit extends the operating hours and thermal output fluctuations of FPCs. Research suggests that employing turbulators and nanofluids as heat transfer fluids are particularly effective for enhancing heat transfer in FPCs. This comprehensive review serves as a critical tool for evaluating and comparing various heat transfer augmentation techniques, aiding in the selection of the most suitable option.
Fins-nanoparticle combination for phase change material enhancement in a triplex tube heat exchanger: A numerical approach to thermal sustainability
2024
ICHMT
Many phase change materials exhibit low thermal conductivity, leading to incomplete melting and solidification processes. To address this issue, researchers have numerically explored the integration of alumina nanoparticles (Al ) with paraffin (RT82), a phase change material with a solidification temperature of 65 ◦ C, in a triplextube heat exchanger. The phase change material model with internal longitudinal fins employed the bothsides freezing technique and was conducted using Ansys Fluent software, employing the enthalpy-porosity method within a finite-volume framework to model the phase change material behavior during both melting and solidification phases. This methodology aims to significantly improve the thermal performance of thermal energy storage systems by enhancing heat transfer efficiency within the phase change material (PCM), thereby ensuring more effective utilization of stored thermal energy. The numerical findings show that the pure PCM completely solidified in 780 min. By dispersing 1 %, 4 %, 7 %, and 10 % of Al 2 O 3 in the PCM, thermal conductivity improved by 3 %, 12.5 %, 22.5 %, and 32.5 %, respectively. Additionally, the inclusion of nano-PCM reduced the solidification time. This research also compares the overall energy release in two different situations: PCM with and without nanoparticles. The computer-generated simulation results closely correlated with the practical experimentation results
En